### **DEIF Introduction in Lakeside Park**

Klagenfurt, 2020-12-15









5% global market share – China, Europe, Brasilia, India

#### Leading in Retrofit of Control System

>2000 Wind Turbines retrofitted, offerings for Repower Design (Senvion\*, Dong Fang\*), Vestas\*, Suzlon\*, Enercon, Nordex, ...

### **DEIF** in Lakeside Park

Global Competence Center for

- Asset Upgrade & Wind Business
- Data & Machine Learning

Focus on Software Development, Business Development, Management



80 5 Pitch angle [deg] 0 Tip speed ratio [-]



 $R_t = f(Power + Loads)$ 

S<sub>t</sub> = Turbine sensory output

e.g. Deep Q-learning Agent

Wind Turbine

Controller & Sensors



#### **Retrofit Focus: Wind Park Owner**

#### We deliver

- New Control Software for Old Wind Turbines
- New Control Systems for Old and New turbines
- Electric Systems
- Analysis & Reporting Services
- Wind Turbine Engineering Services

#### **Maximal benefit for IPP**

- 1) Flexible service & maintenance stay free
- 2) Full access to all data you are the owner
- 3) Site Specific Optimizations gain the maximum



"After DEIF retrofit the errors reduced, the turbine runs more optimal and we had the best energy production month ever!" – Suzlon S64 owner in USA

### What means +1% AEP (Annual Energy Production)?



### The Difference of DEIF in Wind Power



#### **Full Re-engineering of the Wind Turbine!**

- Load Calculations,
- Aero-elastic Modelling,
- Control Engineering,
- Data Analysis,
- Lifetime Optimizations,
- Electrical Design,
- Turbine Optimizations & New Functions like De-icing,
- etc. ...

## Technology Support Organization – replace OEM





### Markets with DEIF Wind / Klagenfurt Installations



# Self Learning Wind Controller Research Project with support of FFG and KWF

318

1.5 895



### Improving Wind Turbine Controls

- Increased performance = increased energy production
- Increased energy production vs. mechanical loads

#### What we do today:

- Manual tuning and validation per individual turbine
- Resource intensive not economic for bigger fleet

#### The path to success:

- Enhance data acquisition and cloud processing
- □ Introduce AI based algorithms for self-optimizing controllers
- □ Introduce model based (load) validation
- Have a controller which self-optimizes AEP of individual turbine



### **Reinforcement learning for Wind turbines**



### Use Case: Inflow Optimizer

- Automatic detection and calibration of the optimum yaw angle (wind attack position)
  - Usage of change of wind direction due to wind turbulence, no forced yaw maneuvers
  - Analysis of the inflow direction leading to optimal performance
- Optimum position depends on production situation (rotor speed, output power, pitch angle, ...)
  - The calibration is done depending on the turbine operation point (wind speed binning with intervals of 0.5m/s). The result of that analysis is the "Nacelle Transfer Funcion".
  - The Nacelle Transfer function can be computed in dependency of wind speed, rotational speed, output power or other variables (depending on turbine type).
- Calibration is done independendly for every wind sensor. This way sensor failure and sudden sensor offset are covered.
- Possible performance increase ~2%
- Explored as part of a Master Thesis Project by our AAU intern Nataša Rašeta

Analysis of Optimum Inflow Direction per Wind Speed Interval:





### **Potential for Cooperation**

#### Market Intelligence, Market Approach

- Energy Markets Globally
- Renewables

#### Technology – Knowledge Exchange

- AI / self optimizing systems
- Software platforms
- Cloud / Data services

Reach out to: Alexander Gröber alg@deif.com +43 677 626 433 86